LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-Destructive Evaluation of Salmon and Tuna Freshness in a Room-Temperature Incubation Environment Using a Portable Visible/Near-Infrared Imaging Spectrometer

Photo by judy_beth_morris_idaho from unsplash

HighlightsWhile freshness is a critical value of food quality, its assessment requires complex methods, which are costly and time-consuming.In this work, it is demonstrated that spectral responses obtained from a… Click to show full abstract

HighlightsWhile freshness is a critical value of food quality, its assessment requires complex methods, which are costly and time-consuming.In this work, it is demonstrated that spectral responses obtained from a portable VIS/NIR imaging spectrometer can be used to predict food freshness using a CNN-based machine learning algorithm.In the food industry, the method can assess real-time food freshness nondestructively and cost-effectively.Abstract. There has been strong demand for the development of accurate but simple methods to assess the freshness of foods. In this study, a system is proposed to determine the freshness of fish by analyzing the spectral response with a portable visible/near-infrared (VIS/NIR) imaging spectrometer and a convolution neural network (CNN) machine learning algorithm. Spectral response data from salmon and tuna, which were incubated at 25°C, were obtained every minute for 30 h and were categorized into three stages (fresh, likely spoiled, or spoiled) based on the time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of the experimental samples. The accuracy of the spectral data in predicting the freshness was ~84% for salmon and ~88% for tuna. Keywords: CNN, Fish, Freshness, pH, Spectral data, VIS/NIR.

Keywords: imaging spectrometer; salmon tuna; freshness

Journal Title: Transactions of the ASABE
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.