LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast and non-iterative zonal estimation for the non-rectangular data in the transparent surface reconstruction from polarization analysis.

Photo from wikipedia

In the method of surface reconstruction from polarization, the reconstructed area is generally non-rectangular and contains a large number of sampling points. There is a difficulty that the coefficient matrix… Click to show full abstract

In the method of surface reconstruction from polarization, the reconstructed area is generally non-rectangular and contains a large number of sampling points. There is a difficulty that the coefficient matrix in front of the height vector changes with the shape of the measured data when using the zonal estimation. The traditional iterative approaches consume more time for the reconstruction of this type of data. This paper presents a non-iterative zonal estimation to reduce the computing time and to accurately reconstruct the surface. The index vector is created according to the positions of both the valid and invalid elements in the difference and gradient matrices. It is used to obtain the coefficient matrix corresponding to the general data. The heights in the non-rectangular area are calculated non-iteratively by the least squares method. At the same time, the sparse matrix is applied for handling the large-scale data quickly. The simulation and the experiment are designed to verify the feasibility of the proposed method. The results show that the proposed method is highly efficient and accurate in the reconstruction of the non-rectangular data.

Keywords: reconstruction; zonal estimation; surface reconstruction; non rectangular

Journal Title: Applied optics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.