LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Beam propagation simulation of phased laser arrays with atmospheric perturbations.

Photo from wikipedia

Directed energy phased array (DEPA) systems have been proposed for applications such as beaming optical power for electrical use on remote sensors, rovers, spacecraft, and future moon bases, as well… Click to show full abstract

Directed energy phased array (DEPA) systems have been proposed for applications such as beaming optical power for electrical use on remote sensors, rovers, spacecraft, and future moon bases, as well as for planetary defense against asteroids and photonic propulsion up to relativistic speeds. All such scenarios involve transmission through atmosphere and beam perturbations due to turbulence that must be quantified. Numerical beam propagation and feedback control simulations were performed using an algorithm optimized for efficient calculation of real-time beam dynamics in a Kolmogorov atmosphere. Results were used to quantify the effectiveness of the system design with different degrees of atmospheric turbulence and zenith angles, and it was found that a large aperture DEPA system placed at a high altitude site can produce a stable diffraction limited spot (Strehl>0.8) on space-based targets for Fried length r0≥10cm (at 500 nm) and zenith angles up to 60 deg, depending on atmospheric conditions. We believe these results are promising for the next generation of power beaming and deep space exploration applications.

Keywords: propagation; phased laser; beam propagation; simulation phased; laser arrays; propagation simulation

Journal Title: Applied optics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.