LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing parameter design for full-aperture rapid planar polishing based on fuzzy optimization.

Photo from wikipedia

Full-aperture rapid planar polishing (RPP) has been widely used in optics manufacturing for high-power laser systems. A new, to the best of our knowledge, fuzzy optimization method was presented to… Click to show full abstract

Full-aperture rapid planar polishing (RPP) has been widely used in optics manufacturing for high-power laser systems. A new, to the best of our knowledge, fuzzy optimization method was presented to assess the precision and productivity of RPP. Unlike the traditional method that can only set one objective, the proposed method can combine different objectives for RPP into one overall indicator. The material removal rate, material removal uniformity, and synthetical fuzzy indicator of RPP (SFIRPP) were selected as the objectives to prove the validity of fuzzy optimization. The rotational speed of optics, polishing pressure, and swing speed were set as the optimized parameters. The orthogonal design was introduced to simplify the operations of experiments. A semi-gamma distribution was used to fit the curve of SFIRPP. The experimental results indicated that the optimized parameters under SFIRPP obtained better manufacturing precision and productivity for flat optics simultaneously. The proposed fuzzy optimization provides the potential for enhancing the optimal parameters of RPP.

Keywords: full aperture; rapid planar; aperture rapid; fuzzy optimization; optics

Journal Title: Applied optics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.