LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of single-mode fiber-optic extrinsic Fabry-Perot interferometric sensors with planar metal mirrors.

Photo by viazavier from unsplash

We theoretically study the spectral characteristics and noise performance of wavelength-interrogated fiber-optic sensors based on an extrinsic Fabry-Perot (FP) interferometer (EFPI) formed by thin metal mirrors. We develop a model… Click to show full abstract

We theoretically study the spectral characteristics and noise performance of wavelength-interrogated fiber-optic sensors based on an extrinsic Fabry-Perot (FP) interferometer (EFPI) formed by thin metal mirrors. We develop a model and use it to analyze the effect of key sensor parameters on the visibility and spectral width of the sensors, including the beam width of the incident light, metal coating film thickness, FP cavity length, and wedge angle of the two mirrors. Through Monte Carlo simulations, we obtain an empirical equation that can be used to estimate the wavelength resolution from the visibility and spectral width, which can be used as a figure-of-merit that is inherent to the sensor and independent on the system noises. The work provides a useful tool for designing, constructing, and interrogating high-resolution fiber-optic EFPI sensors.

Keywords: extrinsic fabry; metal mirrors; fiber optic; fabry perot

Journal Title: Applied optics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.