LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Femtosecond laser-induced damage threshold of nematic liquid crystals at 1030  nm.

Photo from wikipedia

The laser-induced damage threshold (LIDT) of nematic liquid crystals is investigated in the femtosecond regime at ≃1030nm. The thickness and breakdown of freely suspended thin films (≃100nm) of different mixtures… Click to show full abstract

The laser-induced damage threshold (LIDT) of nematic liquid crystals is investigated in the femtosecond regime at ≃1030nm. The thickness and breakdown of freely suspended thin films (≃100nm) of different mixtures (MLC2073, MLC2132, and E7) is monitored in real time by spectral-domain interferometry. The duration of laser pulses was varied from 180 fs to 1.8 ps for repetition rates ranging from single shot to 1 MHz. The dependence of the LIDT with pulse duration suggests a damage mechanism dominated by ionization mechanisms at low repetition rate and by linear absorption at high repetition rate. In the single-shot regime, LIDTs exceeding 1J/cm2 are found for the three investigated mixtures. The LIDT of polyvinyl alcohol is also investigated by the same method.

Keywords: induced damage; damage; damage threshold; laser; nematic liquid; laser induced

Journal Title: Applied optics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.