LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accurate mechanical-optical theoretical model of cross-axis sensitivity of an interferometric micro-optomechanical accelerometer.

Photo from wikipedia

An interferometric micro-optomechanical accelerometer usually has ultrahigh sensitivity and accuracy. However, cross-axis interference inevitably degrades the performance, including its detection accuracy and output signal contrast. To accurately clarify the influence… Click to show full abstract

An interferometric micro-optomechanical accelerometer usually has ultrahigh sensitivity and accuracy. However, cross-axis interference inevitably degrades the performance, including its detection accuracy and output signal contrast. To accurately clarify the influence of cross-axis interference, a modified mechanical-optical theoretical model is established. The rotation of the proof mass and the detected light intensity are quantitatively investigated with a load of cross-axis acceleration. A simulation and experiment are performed to verify the correctness of the theoretical model when the cross-axis acceleration is from 0 to 0.175 g. The results demonstrate that this model has a more than fivefold accuracy increase compared with conventional theoretical models when the cross-axis acceleration is from 0.06 to 0.175 g. In addition, we provide a suppression method to diminish the rotation of the proof mass based on squeeze film air damping, which significantly suppresses the contrast reduction caused by cross-axis interference.

Keywords: interferometric micro; micro optomechanical; cross; cross axis; theoretical model

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.