A novel, to the best of our knowledge, four-band tunable absorber sensor, based on a graphene layer, is presented. The proposed sensor configuration is composed of a single monolayer of… Click to show full abstract
A novel, to the best of our knowledge, four-band tunable absorber sensor, based on a graphene layer, is presented. The proposed sensor configuration is composed of a single monolayer of graphene placed on top of a SiO2 dielectric substrate, whereas a gold grounding plane is placed beneath the SiO2. In addition, the resonant frequencies of the sensor can be directly controlled by adjusting the Fermi level of graphene, while the absorption rate reaches a value greater than 99% at all resonant peaks. The acquired calculation results of the refractive index sensitivity of our proposed sensor show that the four resonant peaks possess superior sensing characteristics. Additionally, by covering the measured objects with different refractive indices, the acquired results indicate that the sensing performance of the sensor exhibits good linearity. From our analysis, it is concluded that the absorbing sensor exhibits a broad range of potential applications in the biomedical field.
               
Click one of the above tabs to view related content.