LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction model of residual stress during precision glass molding of optical lenses.

Photo from wikipedia

Precision glass molding (PGM) is an important processing technology for aspheric lenses that has the advantages of low complexity, high precision, and short processing time. The key problem in the… Click to show full abstract

Precision glass molding (PGM) is an important processing technology for aspheric lenses that has the advantages of low complexity, high precision, and short processing time. The key problem in the PGM process is to accurately predict the residual stress of aspheric lenses. In this paper, we examine the residual stress relaxation model for aspheric lenses, including a creep experiment of D-K9 glass, calculating shear relaxation function, and predicting residual stress of aspheric lenses with the finite element method. Validations of the proposed model are conducted for three different process parameters, including molding temperature, molding pressure, and molding rate. The experimental and simulation results show that the errors of the residual stresses of the three process parameters are within 0.358 Mpa, which proves the validity of the model. The model can be used to predict the residual stress of the optical glass lens fabricated by PGM and analyze the processing parameters.

Keywords: stress; precision glass; residual stress; model

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.