LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Line contact ring magnetorheological finishing process for precision polishing of optics.

Photo from wikipedia

A line contact ring magnetorheological finishing (RMRF) process is conceptualized and developed for the finishing of precision optical surfaces. This tool is analogous to the cup wheel tool widely used… Click to show full abstract

A line contact ring magnetorheological finishing (RMRF) process is conceptualized and developed for the finishing of precision optical surfaces. This tool is analogous to the cup wheel tool widely used in the optical industry for forming and fine grinding but semi-rigid in nature, thus removing high irregularities preferentially. This paper presents detailed simulations of the development of the new, to the best of our knowledge, RMRF tool and its experimental use and suitability in the polishing process. The line contact interaction between the workpiece and magnetorheological fluid present in the annular region is responsible for the finishing mechanism. The material removal rate and influence function of the RMRF process were calculated, which is essential and used for corrective polishing. The volumetric material removal rate was 0.0010406mm3/min with surface roughness of 5.94 nm; however, it can be increased with optimization of machine parameters such as gap, tool rotation, current, etc. Using this RMRF process, a polishing experiment was done over an NBK-7 glass workpiece of 40 mm aperture having 70 mm radius of curvature. Surface roughness improved down to 7 nm from 28.5 nm, and figure error improved down to 295 nm from 849 nm after four cycles of polishing. This investigation demonstrates the suitability of the RMRF process for precision polishing technology for glass optics.

Keywords: finishing; line contact; process; optics

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.