LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modal decomposition of an incoherent combined laser beam based on the combination of residual networks and a stochastic parallel gradient descent algorithm.

Photo by nci from unsplash

With the increase of the superimposed eigenmodes number, the traditional numerical modal decomposition (MD) technique will inevitably suffer from ambiguity and local minima problems and thus is typically unsuitable for… Click to show full abstract

With the increase of the superimposed eigenmodes number, the traditional numerical modal decomposition (MD) technique will inevitably suffer from ambiguity and local minima problems and thus is typically unsuitable for conducting modal decomposition of an incoherent combined laser beam. In this paper, we propose a novel, to the best of our knowledge, MD algorithm, named ResNet-SPGD, which combines the advantages of residual networks (ResNet) and stochastic parallel gradient descent (SPGD) algorithm. Via setting the modal mode coefficients obtained from the CNN model as the initial value of the SPGD algorithm, such algorithm shows an attractive solution to mitigate the problem of modal ambiguity. The proposed algorithm is preliminarily applied to the modal decomposition of an incoherent combined laser beam, and the feasibility is demonstrated via numerical simulations. Complete MD is performed with high accuracy, and the only cost is the sacrifice of some real-time capacity.

Keywords: incoherent combined; combined laser; modal decomposition; algorithm; decomposition incoherent

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.