LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase derivative estimation in digital holographic interferometry using a deep learning approach.

Photo from wikipedia

In digital holographic interferometry, reliable estimation of phase derivatives from the complex interference field signal is an important challenge since these are directly related to the displacement derivatives of a… Click to show full abstract

In digital holographic interferometry, reliable estimation of phase derivatives from the complex interference field signal is an important challenge since these are directly related to the displacement derivatives of a deformed object. In this paper, we propose an approach based on deep learning for direct estimation of phase derivatives in digital holographic interferometry. Using a Y-Net model, our proposed approach allows for simultaneous estimation of phase derivatives along the vertical and horizontal dimensions. The robustness of the proposed approach for phase derivative extraction under both additive white Gaussian noise and speckle noise is shown via numerical simulations. Subsequently, we demonstrate the practical utility of the method for deformation metrology using experimental data obtained from digital holographic interferometry.

Keywords: digital holographic; phase; estimation; approach; holographic interferometry

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.