LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Indirect and direct estimation of pharmacokinetic parameters in dynamic diffuse fluorescence tomography by adaptive extended Kalman filtering.

Photo by kseegars from unsplash

Pharmacokinetic parameter estimation with the support of dynamic diffuse fluorescence tomography (DFT) can provide helpful diagnostic information for tumor differentiation and monitoring. Adaptive extended Kalman filtering (AEKF) as a nonlinear… Click to show full abstract

Pharmacokinetic parameter estimation with the support of dynamic diffuse fluorescence tomography (DFT) can provide helpful diagnostic information for tumor differentiation and monitoring. Adaptive extended Kalman filtering (AEKF) as a nonlinear filter method has the merits of high quantitativeness, noise robustness, and initialization independence. In this paper, indirect and direct AEKF schemes combining with a commonly used two-compartment model were studied to estimate the pharmacokinetic parameters based on our self-designed dynamic DFT system. To comprehensively compare the performances of both schemes, the selection of optimal noise covariance matrices affecting estimation results was first studied, then a series of numerical simulations with the metabolic time ranged from 4.16 min to 38 min was carried out and quantitatively evaluated. The comparison results show that the direct AEKF outperforms the indirect EKF in estimation accuracy at different metabolic velocity and demonstrates stronger stability at the large metabolic velocity. Furtherly, the in vivo experiment was conducted to achieve the indocyanine green pharmacokinetic-rate images in the mouse liver. The experimental results confirmed the capability of both schemes to estimate the pharmacokinetic-rate images and were in agreement with the theory predictions and the numerical simulation results.

Keywords: extended kalman; dynamic diffuse; diffuse fluorescence; adaptive extended; estimation; fluorescence tomography

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.