LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Imaging simulation of the AMCW ToF camera based on path tracking.

Photo from wikipedia

The time-of-flight (ToF) camera suffers from many error factors, such as multiple reflection or multipath interference and electronic and optical shot noise, making it difficult to simulate its imaging process.… Click to show full abstract

The time-of-flight (ToF) camera suffers from many error factors, such as multiple reflection or multipath interference and electronic and optical shot noise, making it difficult to simulate its imaging process. Aiming to test the ToF camera algorithm, it is important to obtain a depth image affected by these error factors. In order to model the light propagation behavior and the sensor effect in the imaging process of the ToF camera, an amplitude modulated continuous-wave (AMCW) ToF camera imaging simulation method based on path tracking is presented by deducing the path tracking algorithm model in the AMCW ToF camera theoretically and by realizing the physically based simulation by introducing the infrared bidirectional reflectance distribution function (BRDF) data of the actual materials. According to the constructed error evaluation indexes, the correctness of the imaging simulation method is verified based on the ground experiment. The mean absolute error (MAE) and root mean square error (RMSE) are 10.32 mm and 15.12 mm, respectively, which are less than the error results of the other two comparative simulation methods. The results show that the proposed method is reasonable and can provide reliable data support for AMCW ToF hardware development and algorithm testing.

Keywords: amcw tof; tof; tof camera; simulation

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.