LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polarization-sensitive tunable extraordinary terahertz transmission based on a hybrid metal-vanadium dioxide metasurface.

Photo from wikipedia

Thermally tunable extraordinary terahertz transmission in a hybrid metal-vanadium dioxide (VO2) metasurface is numerically demonstrated. The metasurface consists of a metal sheet perforated by square loops, while the loops are… Click to show full abstract

Thermally tunable extraordinary terahertz transmission in a hybrid metal-vanadium dioxide (VO2) metasurface is numerically demonstrated. The metasurface consists of a metal sheet perforated by square loops, while the loops are connected with strips of VO2. The frequency and amplitude of the transmission resonance are modulated by controlling the conductivity of VO2. For a y-polarized incident field, the resonance transmission peak redshifts from 0.88 to 0.81 THz upon insulator-to-metallic phase transition of VO2. For an x-polarized incident field, the transmission resonance at 0.81 THz is observed in the insulator phase. However, in the metallic phase of VO2, the electromagnetic field is effectively reflected in the 0.5-1.1 THz range with a transmission level lower than 0.14. The proposed metasurface can be utilized as a terahertz modulator, reconfigurable filter, or switch.

Keywords: terahertz transmission; transmission; tunable extraordinary; extraordinary terahertz; metasurface

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.