LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polarized induced phase grating in a quantized four-level graphene monolayer system.

Photo from wikipedia

We discuss the electromagnetically induced grating (EIG) and electromagnetically induced phase grating (EIPG) in a four-level quantized graphene monolayer system. By using the density matrix technique and perturbation theory, we… Click to show full abstract

We discuss the electromagnetically induced grating (EIG) and electromagnetically induced phase grating (EIPG) in a four-level quantized graphene monolayer system. By using the density matrix technique and perturbation theory, we first obtain the self-Kerr nonlinear susceptibility of the graphene system; afterwards, we study the amplitude and phase modulations of the probe light. We discovered that the EIG and EIPG can be found by controlling the elliptically polarized coupling fields that interact with the monolayer graphene system. Owing to the phase modulation of the transmitted light beam, we recognized that the probe strength can also additionally switch from zeroth-order to high-order diffraction. Moreover, we found that the diffraction performance of the grating may be adjusted through tuning the polarization of the coupling light.

Keywords: graphene; system; phase; phase grating; monolayer; induced phase

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.