LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic and complete terahertz wavefront manipulation via an anisotropic coding metasurface.

Photo by lucabravo from unsplash

A reconfigurable anisotropic coding metasurface composed of a graphene layer and anisotropic Jerusalem-cross metallic layer is proposed for dynamic and complete multi-channel terahertz wavefront manipulation. By controlling the Fermi energy… Click to show full abstract

A reconfigurable anisotropic coding metasurface composed of a graphene layer and anisotropic Jerusalem-cross metallic layer is proposed for dynamic and complete multi-channel terahertz wavefront manipulation. By controlling the Fermi energy of graphene, continuous amplitude modulation is realized for the coding elements with certain phase responses. By arranging anisotropic phase coding elements with a specific coding sequence and changing the Fermi energy of graphene, the proposed metasurface can dynamically control multi-channel reflection beams with designed power distribution and simultaneously manipulate the scattering pattern from diffusion to mirror scattering under x- and y-polarized incidence, respectively. Compared with the dynamic phase modulation metasurface, such a tunable metasurface uses three degrees of freedom, including the polarization, phase, and amplitude responses to fully control the reflected wavefronts, which may have promising applications in tunable terahertz multi-functional holograms and multi-channel information communication.

Keywords: coding metasurface; terahertz wavefront; anisotropic; anisotropic coding; dynamic complete; metasurface

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.