LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Soliton phenomena in normal and anomalous dispersion regions in Er-doped mode-locked fiber lasers based on Cr2Si2Te6 saturable absorbers.

Photo from wikipedia

Investigations of optical solitons have always been a hot topic due to their important scientific research value. In recent years, ultrafast lasers based on two-dimensional materials such as saturable absorbers… Click to show full abstract

Investigations of optical solitons have always been a hot topic due to their important scientific research value. In recent years, ultrafast lasers based on two-dimensional materials such as saturable absorbers (SAs) have become the focus of optical soliton research. In this work, various soliton operations are demonstrated in Er-doped fiber lasers (EDFLs) based on ${{\rm Cr}_2}{{\rm Si}_2}{{\rm Te}_6}$ SAs. First, a low-threshold passively mode-locked EDFL with traditional soliton output is constructed, and the pump threshold is as low as 10.1 mW. Second, by adjusting the net dispersion of the cavity, stable dissipative soliton operation can also be obtained. Traditional soliton mode-locked operation with controllable Kelly sidebands from first order to fourth order is realized by adjusting the pump power in a double-ended pumped structure, and the SNR is as high as 55 dB. All results prove that ${{\rm Cr}_2}{{\rm Si}_2}{{\rm Te}_6}$ used as SA material has great potential and wide application prospects in investigating optical soliton operations in mode-locked fiber lasers with both normal and anomalous dispersion.

Keywords: soliton; lasers based; dispersion; fiber lasers; mode locked; saturable absorbers

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.