LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical switching a photon-avalanche-like mechanism in NdAl3(BO3)4 particles excited at 1064  nm by an auxiliary beam at 808  nm.

Photo from wikipedia

In recent years, an unconventional excitation of trivalent neodymium ions (N d 3+) at 1064 nm, not resonant with ground-state transitions, has been investigated with the unprecedented demonstration of a photon-avalanche-like… Click to show full abstract

In recent years, an unconventional excitation of trivalent neodymium ions (N d 3+) at 1064 nm, not resonant with ground-state transitions, has been investigated with the unprecedented demonstration of a photon-avalanche-like (PA-like) mechanism, in which the temperature increase plays a fundamental role. As a proof-of-concept, N d A l 3(B O 3)4 particles were used. A consequence of the PA-like mechanism is the absorption enhancement of excitation photons providing light emission at a broad range covering the visible and near-infrared spectra. In the first study, the temperature increase was due to intrinsic nonradiative relaxations from the N d 3+ and the PA-like mechanism ensued at a given excitation power threshold (P t h ). Subsequently, an external heating source was used to trigger the PA-like mechanism while keeping the excitation power below P t h at room temperature. Here, we demonstrate the switching on of the PA-like mechanism by an auxiliary beam at 808 nm, which is in resonance with the N d 3+ ground-state transition 4 I 9/2→{4 F 5/2,2 H 9/2}. It comprises the first, to the best of our knowledge, demonstration of an optical switched PA, and the underlying physical mechanism is the additional heating of the particles due to the phonon emissions from the N d 3+ relaxation pathways when exciting at 808 nm. The present results have potential applications in controlled heating and remote temperature sensing.

Keywords: avalanche like; auxiliary beam; like mechanism; photon avalanche; beam 808; mechanism

Journal Title: Applied optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.