This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced… Click to show full abstract
This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the incompressible Navier-Stokes equations. The resultant temperature fluctuations were coupled to refractive index fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated results are discussed relative to recent experimental thermal blooming results [Opt. Laser Technol.146, 107568 (2022) OLTCAS0030-399210.1016/j.optlastec.2021.107568], with half-moon irradiance patterns matching for a laser wavelength at moderate absorption. Higher energy lasers were simulated within an atmospheric transmission window, with the laser irradiance exhibiting crescent profiles.
               
Click one of the above tabs to view related content.