LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-accuracy absolute rotation rate measurements with a large ring laser gyro: establishing the scale factor.

Photo from wikipedia

Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in… Click to show full abstract

Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in fundamental physics, remaining systematic errors have to be significantly reduced. We derive a modified expression for the Sagnac frequency of a square ring laser gyro under Earth rotation. The modifications include corrections for dispersion (of both the gain medium and the mirrors), for the Goos-Hänchen effect in the mirrors, and for refractive index of the gas filling the cavity. The corrections were measured and calculated for the 16  m2 Grossring laser located at the Geodetic Observatory Wettzell. The optical frequency and the free spectral range of this laser were measured, allowing unique determination of the longitudinal mode number, and measurement of the dispersion. Ultimately we find that the absolute scale factor of the gyroscope can be estimated to an accuracy of approximately 1 part in 108.

Keywords: laser; laser gyro; large ring; scale factor; ring laser

Journal Title: Applied optics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.