LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Raman scattering in single-crystal sapphire at elevated temperatures.

Photo from wikipedia

Sapphire is a widely used high-temperature material, and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in… Click to show full abstract

Sapphire is a widely used high-temperature material, and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081°C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurements were found to be most reliable for A1g and Eg modes using the peaks at ±418, ±379, +578, +645, and +750  cm-1 (+ and - are designated for Stokes and anti-Stokes peaks, respectively). The 418  cm-1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645, and +750, the temperature dependence of peak position is presented. The peaks' spectral positions provide the most precise temperature information within the experimental temperature range. The resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.

Keywords: scattering single; raman scattering; temperature range; temperature; sapphire; stokes peaks

Journal Title: Applied optics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.