We present a numerical and theoretical study on the realization of tunable plasmon-induced transparency (PIT) effect at terahertz frequencies in Dirac semimetal (known as "three-dimensional graphene") metamaterials. Simulations reveal that… Click to show full abstract
We present a numerical and theoretical study on the realization of tunable plasmon-induced transparency (PIT) effect at terahertz frequencies in Dirac semimetal (known as "three-dimensional graphene") metamaterials. Simulations reveal that the PIT effect is generated by an electric field transferred from the central strip to side strips due to the structural symmetry breaking. The most prominent feature is that the plasmonic resonance in Dirac semimetals can be actively tuned by changing the Fermi energy and an ultrahigh group delay of about 6.81 ps is obtained in our proposed design. Our study can provide guidance for various terahertz devices in practical applications.
               
Click one of the above tabs to view related content.