LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application.

Photo by fabiooulucas from unsplash

Using arc discharge technology, we fabricated a fiber-optic Fabry-Perot (FP) pressure sensor with a very low temperature coefficient based on a microbubble that can be applied in a high-temperature environment.… Click to show full abstract

Using arc discharge technology, we fabricated a fiber-optic Fabry-Perot (FP) pressure sensor with a very low temperature coefficient based on a microbubble that can be applied in a high-temperature environment. The thin-walled microbubble can be fabricated by heating the gas-pressurized hollow silica tube (HST) using a commercial fusion splicer. Then, the well-cut single-mode fiber (SMF) was inserted into the microbubble, and they were fused together. Thus, the FP cavity can be formed between the end of the SMF and the inner surface of the microbubble. The diameter of the microbubble can be up to 360 μm with the thickness of the wall being approximately 0.5 μm. Experimental results show that such a sensor has a linear sensitivity of approximately -6.382  nm/MPa, -5.912  nm/MPa at 20°C, and 600°C within the pressure range of 1 MPa. Due to the thermal expansion coefficient of the SMF being slightly larger than that of silica, we can fuse the SMF and the HST with different lengths; thus, the sensor has a very low temperature coefficient of approximately 0.17 pm/°C.

Keywords: pressure; fabry perot; temperature; fiber optic; perot pressure; optic fabry

Journal Title: Applied optics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.