We proposed a device composed of a Bragg grating and a long-range surface plasmon polariton waveguide. The waveguide is formed by embedding a thin Au stripe in negative UV photoresist… Click to show full abstract
We proposed a device composed of a Bragg grating and a long-range surface plasmon polariton waveguide. The waveguide is formed by embedding a thin Au stripe in negative UV photoresist (SU-8 2005). The corrugated grating structure is created on a silica substrate using contact lithography and inductively coupled plasma etching, which is transferred onto the SU-8 2005 film by a spin coating process, producing a periodic modulation of refractive index along the waveguide. We achieve a transmission peak with an extinction ratio of 17 dB and a 3-dB bandwidth of 0.9 nm at a wavelength of 1575.2 nm. We achieve a reflection peak with a side-mode suppression ratio of 9.7 dB, a 3-dB bandwidth of 0.9 nm at a wavelength of 1575.2 nm when the heating electrode isn't working. The shift of the reflection peak with heating power over the range 0-6 mW is approximately 2.9 nm. This thermal dependence exhibits an average slope of -0.48 nm/mW.
               
Click one of the above tabs to view related content.