Femtosecond vortex beams with adjustable temporal pulse shapes are generated. These shaped laser pulses are characterized in the spectral domain by determination of the spectral amplitude and phase as well… Click to show full abstract
Femtosecond vortex beams with adjustable temporal pulse shapes are generated. These shaped laser pulses are characterized in the spectral domain by determination of the spectral amplitude and phase as well as in the spatial domain by expansion of the beam profile in a superposition of Laguerre-Gaussian transversal laser modes. The experiments demonstrate that the temporal pulse shapes impressed with a pulse shaper based on a programmable liquid-crystal spatial light modulator are basically unaltered by subsequent transmission through a spiral phase plate, while a high-quality optical vortex is imposed. The combination of programmable pulse shapes and optical vortices in femtosecond laser beams opens new possibilities for applications in micromachining, high harmonic generation, and microscopy.
               
Click one of the above tabs to view related content.