LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasmonic nano-tweezer based on square nanoplate tetramers.

Photo by glenncarstenspeters from unsplash

The research fields of trapping nanoparticles have experienced a huge development in recent years, which mainly benefits from the unique field enhancement in plasmonic nanomaterials. Since the large field enhancement… Click to show full abstract

The research fields of trapping nanoparticles have experienced a huge development in recent years, which mainly benefits from the unique field enhancement in plasmonic nanomaterials. Since the large field enhancement originates from the excited localized surface plasmon at the metal surface, exploring novel metal nanostructures with high trapping efficiency is always the main goal in this field. In this work, the plasmonic trapping of nanoparticles based on the gold periodic square tetramers (PST) was investigated through full-wave simulations using the finite-difference time-domain (FDTD) method. The electric field and surface charge distributions on the surface of PST indicate that both the trapping position and efficiency are influenced by orientations of the square nanoplates. The maximum electromagnetic enhancement is achieved when all square nanoplates rotate 45° along the z axis. Therefore, the gradient force and trapping potential of this PST with optimal orientation were further studied, and the results indicate that a dielectric nanoparticle of 15 nm radius can be stably captured. Furthermore, the calculation results show that the plasmonic trapping with this PST exhibits strong polarization dependence. It is easy to change the trapping position and the field intensity by tuning the polarization of the incident wave. Our work enables a deeper understanding of this kind of plasmonic trapping and could have potential applications in biomedical research and life science.

Keywords: field; nano tweezer; plasmonic trapping; plasmonic nano; tweezer based; based square

Journal Title: Applied optics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.