LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-power sampled-grating-based master oscillator power amplifier system with 23.5  nm wavelength tuning around 970  nm.

Photo from wikipedia

Tunable high-power diode lasers are key components in various established and emerging applications. In this work, we present a compact hybrid master oscillator power amplifier (MOPA) laser system. The system… Click to show full abstract

Tunable high-power diode lasers are key components in various established and emerging applications. In this work, we present a compact hybrid master oscillator power amplifier (MOPA) laser system. The system utilizes a tunable GaAs-based sampled-grating (SG) distributed Bragg reflector (DBR) laser as the master oscillator (MO), which emits around a wavelength of 970 nm in a single longitudinal mode with a spectral width below 20 pm. The SG-DBR laser consists of two SGs, each of which can be thermally tuned with microheaters. By tuning one of the two SGs, a discrete wavelength tuning of 21.1 nm can be obtained with a Vernier mode spacing of about 2.3 nm. By tuning both SGs, 23.5 nm of quasi-continuous tuning is obtained, with a mode spacing of about 115 pm. The coupling of the beam emitted by the MO into a tapered power amplifier provides an amplified output power in the watt range having a nearly diffraction-limited beam with a propagation factor of M1/e22=1.6. The combination of high power and wide wavelength tuning in a compact system makes this light source ideal for, among other things, nonlinear frequency conversion.

Keywords: master oscillator; high power; wavelength tuning; system; power; power amplifier

Journal Title: Applied optics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.