LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third- and second-order optical nonlinearities.

Photo from wikipedia

Dispersion engineering for efficient supercontinuum generation (SCG) is investigated in a hybrid nonlinear photonic platform that allows cascaded third- and second-order optical nonlinearities in transverse-electric (TE) guided modes. The highly… Click to show full abstract

Dispersion engineering for efficient supercontinuum generation (SCG) is investigated in a hybrid nonlinear photonic platform that allows cascaded third- and second-order optical nonlinearities in transverse-electric (TE) guided modes. The highly nonlinear chalcogenide waveguides enable SCG spanning over 1.25 octaves (from about 1160 nm to more than 2800 nm at 20  dB below maximum power), while the TE polarization attained is compatible with efficient second-harmonic generation in a subsequent thin-film lithium niobate waveguide integrated monolithically on the same chip. A low-energy pump pulsed laser source of only 25 pJ with 250 fs duration, centered at a wavelength of 1550 nm, can achieve such wideband SCG. The design presented is suitable for the f-to-2f carrier-envelope offset detection technique of stabilized optical frequency comb sources.

Keywords: order optical; optical nonlinearities; third second; cascaded third; lithium niobate; second order

Journal Title: Applied optics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.