An alignment-tolerant telecentric digital holographic microscopy (AT-T-DHM) system based on computer-controlled telecentricity is proposed. It consists of a three-step process-optical recording, computational compensation, and retrieving processes. With a tube-lens-based two-beam… Click to show full abstract
An alignment-tolerant telecentric digital holographic microscopy (AT-T-DHM) system based on computer-controlled telecentricity is proposed. It consists of a three-step process-optical recording, computational compensation, and retrieving processes. With a tube-lens-based two-beam interferometer, phase information of the object is recorded on the hologram, where another optical quadratic phase error (O-QPE) due to the misalignment of the tube lens happens to be added. In the computational compensation process, this phase error can be estimated, by which the O-QPE is balanced out from the recorded hologram. Then, only the phase information of the object can be retrieved from the O-QPE-compensated hologram. This computational compensation process makes the proposed system virtually operate in a telecentric imaging mode, which enables implementing a practical AT-T-DHM. Wave-optical analysis and experiments with a test object confirm the feasibility of the proposed system.
               
Click one of the above tabs to view related content.