LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma emission characteristics in laser-induced breakdown spectroscopy of silicon with mid-infrared, multi-millijoule, nanosecond laser pulses from a Ho:YLF excitation source.

Photo from wikipedia

We characterized the plasma emission produced by the interaction of multi-millijoule, 40 ns duration, mid-infrared laser pulses with a silicon surface. The laser pulses were produced by a Q-switched Ho:YLF master… Click to show full abstract

We characterized the plasma emission produced by the interaction of multi-millijoule, 40 ns duration, mid-infrared laser pulses with a silicon surface. The laser pulses were produced by a Q-switched Ho:YLF master oscillator power amplifier system. Using spectral measurements and a framing camera, we observed a spatial separation of the plasma plume, increased emission signal with low white-light generation, and a drop in the time- and space-averaged apparent plasma density with increasing pump energy. Our results can be explained by continuous heating of the plasma by the pump pulse due to the more efficient inverse bremsstrahlung absorption at longer wavelengths.

Keywords: laser pulses; mid infrared; spectroscopy; multi millijoule; plasma emission

Journal Title: Applied optics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.