LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Beam drift reduction by straightness measurement based on a digital optical phase conjugation.

Photo from wikipedia

One of the greatest challenges of long distance measurement is the beam drift caused by the air refractive index gradient. It has been established in many researches that optical phase… Click to show full abstract

One of the greatest challenges of long distance measurement is the beam drift caused by the air refractive index gradient. It has been established in many researches that optical phase conjugation (OPC) can be used to compensate for the beam bending. However, this method is limited to responding speed, phase conjugate reflectivity, flexibility, and specific source and medium. To reduce beam drift, instead of OPC, this study applies a digital OPC (DOPC) method, which is also creatively applied to collimation and flatness measurements. The main devices in the wavefront correction unit are the spatial light modulator and the Shack-Hartmann wavefront sensor. For the straightness measurement unit, the collimation and flatness of the optical rail are measured through the prism system and a position-sensing detector. After wavefront compensation, the root mean square is decreased from 0.0029λ to 0.0005λ. The beam drift is decreased from 1.22 mm to 0.70 mm in the x direction and from 2.49 mm to 1.55 mm in the y direction. The experimental data indicate that the straightness measurement system based on DOPC can effectively decrease the beam drift.

Keywords: phase; straightness measurement; beam drift; beam

Journal Title: Applied optics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.