LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of a high-spectral-resolution lidar for atmospheric temperature measurement down to the near ground.

Photo from wikipedia

In this paper, a high-spectral-resolution lidar (HSRL) for profiling atmospheric temperature from the ground to 10 km is proposed. A double Nd:YAG laser produces the transmitted laser at 532 nm.… Click to show full abstract

In this paper, a high-spectral-resolution lidar (HSRL) for profiling atmospheric temperature from the ground to 10 km is proposed. A double Nd:YAG laser produces the transmitted laser at 532 nm. The backscattering lidar signal is passed through two different saturated iodine-vapor filters and thus obtains molecular scattering signals that can be employed to determine the temperature. A coaxial postposition transceiver is constructed with an off-axis aspheric reflective telescope (OART). The design of the transceiver and that of the OART are demonstrated. With this transceiver, the lidar blind zone where the overlap factor is zero can be reduced greatly, and accurate temperature measurement for full elevation can be achieved. The whole system is optimized with theoretical models based on geometrical optics and statistical error analyses. Monte Carlo simulations display the performance of the designed HSRL, showing that the all-day temperature retrieval error is better than 1.4 K from the ground to 10 km. The proposed HSRL is expected to provide more accurate atmospheric auxiliary parameters for the detection of aerosols' optical characteristics.

Keywords: high spectral; ground; temperature; resolution lidar; spectral resolution; lidar

Journal Title: Applied optics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.