LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laparoscopic diffuse reflectance spectroscopy of an underlying tubular inclusion: a phantom study.

Photo from wikipedia

We demonstrate diffuse reflectance spectroscopy (DRS) of a subsurface tubular inclusion by using a fiber probe having a single source-detector pair attached to a laparoscopic bipolar device. A forward model… Click to show full abstract

We demonstrate diffuse reflectance spectroscopy (DRS) of a subsurface tubular inclusion by using a fiber probe having a single source-detector pair attached to a laparoscopic bipolar device. A forward model was also developed for DRS sensing of an underlying long absorbing tubular inclusion set in parallel to the tissue surface, normal to the line of sight of the source-detector pair, and equidistant from the source and the detector. The model agreed with measurements performed at 500 nm and using a 10 mm source-detector separation (SDS) on an aqueous tissue phantom embedding a tubing of 2 or 4 mm inner diameter that contained 9.1% to 33.3% red dye at a depth of up to 11.5 mm. When tested on solid phantoms using the 10 mm SDS, a tubular inclusion of $ \ge 3\;{\rm mm}$≥3mm inner diameter containing 0.05% red dye at a background absorption coefficient of $ 0.021\;{\rm mm}^{-1} $0.021mm-1 caused $ \ge 8\% $≥8% change of the signal at 500 nm versus the baseline when the inclusion was shallower than 5 mm. When assessed on avian muscle tissue having a 4 mm tubular inclusion embedded at an edge depth of 2 mm, DRS with the 10 mm SDS differentiated the following contents of the inclusion: 33.3% red dye (mimicking blood), 33.3% green dye, 33.3% yellow dye (mimicking bile), water (mimicking urine), and air.

Keywords: inclusion; reflectance spectroscopy; tubular inclusion; spectroscopy; source detector; diffuse reflectance

Journal Title: Applied optics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.