Response of a laminar diffusion dimethyl-ether flame forced by an acoustic field is provided. A forcing frequency of 100 Hz, which is chosen based on the typical thermo-acoustic instability frequency… Click to show full abstract
Response of a laminar diffusion dimethyl-ether flame forced by an acoustic field is provided. A forcing frequency of 100 Hz, which is chosen based on the typical thermo-acoustic instability frequency in a practical combustor, is applied to the flame at a Reynolds number of 250. The development of the forced vortical structures present in this flame has been investigated utilizing a burst mode laser with a repetition rate of 10 kHz. Flame/vortex interaction is visualized by planar laser-induced fluorescence (PLIF) of formaldehyde, which is used to identify the early-stage fuel decomposition in the flame. The flame structure is also correlated with the velocity field, which is obtained utilizing particle imaging velocimetry (PIV). The resulting phase-resolved and time-averaged velocity and vortex images indicate that the amplitude of excitation has pronounced effects on the flame via modifying the local heat release.
               
Click one of the above tabs to view related content.