LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

System configuration optimization for mesoscopic fluorescence molecular tomography.

Photo from wikipedia

Tissue engineering applications demand 3D, non-invasive, and longitudinal assessment of bioprinted constructs. Current emphasis is on developing tissue constructs mimicking in vivo conditions; however, these are increasingly challenging to image… Click to show full abstract

Tissue engineering applications demand 3D, non-invasive, and longitudinal assessment of bioprinted constructs. Current emphasis is on developing tissue constructs mimicking in vivo conditions; however, these are increasingly challenging to image as they are typically a few millimeters thick and turbid, limiting the usefulness of classical fluorescence microscopic techniques. For such applications, we developed a Mesoscopic Fluorescence Molecular Tomography methodology that collects high information content data to enable high-resolution tomographic reconstruction of fluorescence biomarkers at millimeters depths. This imaging approach is based on an inverse problem; hence, its imaging performances are dependent on critical technical considerations including optode sampling, forward model design and inverse solver parameters. Herein, we investigate the impact of the optical system configuration parameters, including detector layout, number of detectors, combination of detector and source numbers, and scanning mode with uncoupled or coupled source and detector array, on the 3D imaging performances. Our results establish that an MFMT system with a 2D detection chain implemented in a de-scanned mode provides the optimal imaging reconstruction performances.

Keywords: system; fluorescence; mesoscopic fluorescence; molecular tomography; system configuration; fluorescence molecular

Journal Title: Biomedical optics express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.