LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vertically integrated photo junction-field-effect transistor pixels for retinal prosthesis.

Photo from wikipedia

Optoelectronic retinal prostheses transduce light into electrical current for neural stimulation. We introduce a novel optoelectronic pixel architecture consisting of a vertically integrated photo junction-field-effect transistor (Photo-JFET) and neural stimulating… Click to show full abstract

Optoelectronic retinal prostheses transduce light into electrical current for neural stimulation. We introduce a novel optoelectronic pixel architecture consisting of a vertically integrated photo junction-field-effect transistor (Photo-JFET) and neural stimulating electrode. Experimental measurements demonstrate that optically addressed Photo-JFET pixels utilize phototransistive gain to produce a broad range of neural stimulation current and can effectively stimulate retinal neurons in vitro. The compact nature of the Photo-JFET pixel can enable high resolution retinal prostheses with the smallest reported optoelectronic pixel size to help restore high visual acuity in patients with degenerative retinal diseases.

Keywords: photo; vertically integrated; integrated photo; junction field; photo junction; field effect

Journal Title: Biomedical optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.