High density diffuse optical tomography has become increasingly important to detect underlying neuronal activities. Conventional methods first estimate the time courses of the changes in the absorption coefficients for all… Click to show full abstract
High density diffuse optical tomography has become increasingly important to detect underlying neuronal activities. Conventional methods first estimate the time courses of the changes in the absorption coefficients for all the voxels, and then estimate the hemodynamic response function (HRF). Activation-level maps are extracted at last based on this HRF. However, the error propagation among the successive processes degrades and even misleads the final results. Besides, the computation burden is heavy. To address the above problems, a direct method is proposed in this paper to simultaneously estimate the HRF and the activation-level maps from the boundary fluxes. It is assumed that all the voxels in the same activated brain region share the same HRF but differ in the activation levels, and no prior information is imposed on the specific shape of the HRF. The dynamic simulation and phantom experiments demonstrate that the proposed method outperforms the conventional one in terms of the estimation accuracy and computation speed.
               
Click one of the above tabs to view related content.