LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dictionary learning technique enhances signal in LED-based photoacoustic imaging.

There has been growing interest in low-cost light sources such as light-emitting diodes (LEDs) as an excitation source in photoacoustic imaging. However, LED-based photoacoustic imaging is limited by low signal… Click to show full abstract

There has been growing interest in low-cost light sources such as light-emitting diodes (LEDs) as an excitation source in photoacoustic imaging. However, LED-based photoacoustic imaging is limited by low signal due to low energy per pulse-the signal is easily buried in noise leading to low quality images. Here, we describe a signal de-noising approach for LED-based photoacoustic signals based on dictionary learning with an alternating direction method of multipliers. This signal enhancement method is then followed by a simple reconstruction approach delay and sum. This approach leads to sparse representation of the main components of the signal. The main improvements of this approach are a 38% higher contrast ratio and a 43% higher axial resolution versus the averaging method but with only 4% of the frames and consequently 49.5% less computational time. This makes it an appropriate option for real-time LED-based photoacoustic imaging.

Keywords: led based; dictionary learning; photoacoustic imaging; signal; based photoacoustic

Journal Title: Biomedical optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.