High speed volumetric optical microscopy is an important tool for observing rapid processes in living cells or for real-time tracking of sub-cellular components. However, the 3D imaging capability often comes… Click to show full abstract
High speed volumetric optical microscopy is an important tool for observing rapid processes in living cells or for real-time tracking of sub-cellular components. However, the 3D imaging capability often comes at the price of a high technical complexity of the imaging system and/or the requirement of demanding image analysis. Here, we propose a combination of conventional phase-contrast imaging with a customized multi-plane beam-splitter for enabling simultaneous acquisition of images in eight different focal planes. Our method is technically straightforward and does not require complex post-processing image analysis. We apply our multi-plane phase-contrast microscope to the real-time observation of the fast motion of reactivated Chlamydomonas axonemes with sub-µm spatial and 4 ms temporal resolution. Our system allows us to observe not only bending but also the three-dimensional torsional dynamics of these micro-swimmers.
               
Click one of the above tabs to view related content.