A crystalline-fiber-based Mirau-type full-field optical coherence tomography (FF-OCT) system utilizing two partially coherent illumination modes is presented. Using a diode-pumped Ti:sapphire crystalline fiber with a high numerical aperture, spatially-incoherent broadband… Click to show full abstract
A crystalline-fiber-based Mirau-type full-field optical coherence tomography (FF-OCT) system utilizing two partially coherent illumination modes is presented. Using a diode-pumped Ti:sapphire crystalline fiber with a high numerical aperture, spatially-incoherent broadband emission can be generated with high radiance. With two modes of different spatial coherence settings, either deeper penetration depth or higher B-scan rate can be achieved. In a wide-field illumination mode, the system functions like FF-OCT with partially coherent illumination to improve the penetration depth. In a strip-field illumination mode, a compressed field is generated on the sample, and a low-speckle B-scan can be acquired by compounding pixel lines within.
               
Click one of the above tabs to view related content.