Oxygen saturation (SO2) in tissue is a crucially important physiological parameter with ubiquitous clinical utility in diagnosis, treatment, and monitoring, as well as widespread use as an invaluable preclinical research… Click to show full abstract
Oxygen saturation (SO2) in tissue is a crucially important physiological parameter with ubiquitous clinical utility in diagnosis, treatment, and monitoring, as well as widespread use as an invaluable preclinical research tool. Multispectral imaging can be used to visualize SO2 non-invasively, non-destructively and without contact in real-time using narrow spectral filter sets, but typically, these spectral filter sets are poorly suited to a specific clinical task, application, or tissue type. In this work, we demonstrate the merit of optimizing spectral filter sets for more accurate estimation of SO2. Using tissue modelling and simulated multispectral imaging, we demonstrate filter optimization reduces the root-mean-square-error (RMSE) in estimating SO2 by up to 37% compared with evenly spaced filters. Moreover, we demonstrate up to a 79% decrease in RMSE for optimized filter sets compared with filter sets chosen to minimize mutual information. Wider adoption of this approach will result in more effective multispectral imaging systems that can address specific clinical needs and consequently, more widespread adoption of multispectral imaging technologies in disease diagnosis and treatment.
               
Click one of the above tabs to view related content.