Confocal laser endomicroscopy (CLE) offers imaging of tissue microarchitecture and has emerged as a promising tool for in vivo clinical diagnosis of cancer across many organs. CLE, however, can show… Click to show full abstract
Confocal laser endomicroscopy (CLE) offers imaging of tissue microarchitecture and has emerged as a promising tool for in vivo clinical diagnosis of cancer across many organs. CLE, however, can show high inter-observer dependency and does not provide information about tissue molecular composition. In contrast, Raman spectroscopy is a label-free optical technique that provides detailed biomolecular compositional information but offers limited or no morphological information. Here we present a novel hybrid fiber-optic confocal Raman endomicroscopy system for morpho-chemical tissue imaging and analysis. The developed confocal endomicroscopy system is based on a novel detection scheme for rejecting Raman silica fiber interference permitting simultaneous CLE imaging and Raman spectral acquisition of tissues through a coherent fiber bundle. We show that this technique enables real-time microscopic visualization of tissue architecture as well as simultaneous pointwise label-free biomolecular characterization and fingerprinting of tissue paving the way for multimodal diagnostics at endoscopy.
               
Click one of the above tabs to view related content.