LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited].

Photo from wikipedia

Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and… Click to show full abstract

Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and nano-structured silica shells produced by ubiquitous diatom microalgae, whose optical properties have been recently exploited in photonics, solar energy harvesting, and biosensing. Metallization of diatom biosilica, both in the shape of intact frustules or diatomite particles, can trigger plasmonic effects that in turn can find application in high-sensitive detection platforms, allowing to obtain effective nanosensors at low cost and on a large scale. The aim of the present review article is to provide a wide, complete overview on the main metallization techniques applied to diatom biosilica and on the principal applications of diatom-based plasmonic devices mainly but not exclusively in the fields of biochemical sensing, diagnostics and therapeutics.

Keywords: diatom; diagnostics therapeutics; diatom biosilica; sensing diagnostics; biosilica plasmonics

Journal Title: Biomedical optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.