LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic inverse SNR-decorrelation OCT angiography with GPU acceleration.

Photo from wikipedia

Dynamic OCT angiography (OCTA) is an attractive approach for monitoring stimulus-evoked hemodynamics; however, a 4D (3D space and time) dataset requires a long acquisition time and has a large data… Click to show full abstract

Dynamic OCT angiography (OCTA) is an attractive approach for monitoring stimulus-evoked hemodynamics; however, a 4D (3D space and time) dataset requires a long acquisition time and has a large data size, thereby posing a great challenge to data processing. This study proposed a GPU-based real-time data processing pipeline for dynamic inverse SNR-decorrelation OCTA (ID-OCTA), offering a measured line-process rate of 133 kHz for displaying OCT and OCTA cross-sections in real time. Real-time processing enabled automatic optimization of angiogram quality, which improved the vessel SNR, contrast-to-noise ratio, and connectivity by 14.37, 14.08, and 9.76%, respectively. Furthermore, motion-contrast 4D angiographic imaging of stimulus-evoked hemodynamics was achieved within a single trail in the mouse retina. Consequently, a flicker light stimulus evoked an apparent dilation of the retinal arterioles and venules and an elevation of the decorrelation value in the retinal plexuses. Therefore, GPU ID-OCTA enables real-time and high-quality angiographic imaging and is particularly suitable for hemodynamic studies.

Keywords: snr; time; dynamic inverse; decorrelation; real time; oct angiography

Journal Title: Biomedical optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.