LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vivo evaluation of a lipopolysaccharide-induced ear vascular leakage model in mice using photoacoustic microscopy.

Photo by mark0polo from unsplash

Sepsis is caused by dysregulated host inflammatory response to infection. During sepsis, early identification and monitoring of vascular leakage are pivotal for improved diagnosis, treatment, and prognosis. However, there is… Click to show full abstract

Sepsis is caused by dysregulated host inflammatory response to infection. During sepsis, early identification and monitoring of vascular leakage are pivotal for improved diagnosis, treatment, and prognosis. However, there is a lack of research on noninvasive observation of inflammation-related vascular leakage. Here, we investigate the use of photoacoustic microscopy (PAM) for in vivo visualization of lipopolysaccharide (LPS)-induced ear vascular leakage in mice using Evans blue (EB) as an indicator. A model combining needle pricking on the mouse ear, topical smearing of LPS on the mouse ear, and intravenous tail injection of EB is developed. Topical application of LPS is expected to induce local vascular leakage in skin. Inflammatory response is first validated by ex vivo histology and enzyme-linked immunosorbent assay. Then, local ear vascular leakage is confirmed by ex vivo measurement of swelling, thickening, and EB leakage. Finally, PAM for in vivo identification and evaluation of early vascular leakage using the model is demonstrated. For PAM, common excitation wavelength of 532 nm is used, and an algorithm is developed to extract quantitative metrics for EB leakage. The results show potential of PAM for noninvasive longitudinal monitoring of peripheral skin vascular leakage, which holds promise for clinical sepsis diagnosis and management.

Keywords: microscopy; ear vascular; photoacoustic microscopy; model; vascular leakage; leakage

Journal Title: Biomedical optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.