LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel analysis of fNIRS acquired dynamic hemoglobin concentrations: application in young children with autism spectrum disorder.

Photo from wikipedia

A novel analysis of the spatial complexity of functional connectivity (SCFC) was proposed to investigate the spatial complexity of multiple dynamic functional connectivity series in an fNIRS study, using an… Click to show full abstract

A novel analysis of the spatial complexity of functional connectivity (SCFC) was proposed to investigate the spatial complexity of multiple dynamic functional connectivity series in an fNIRS study, using an approach combining principal component analysis and normalized entropy. The analysis was designed to describe the complex spatial features of phase synchrony based dynamic functional connectivity (dFC), which are unexplained in traditional approaches. The feasibility and validity of this method were verified in a sample of young patients with autism spectrum disorders (ASD). Our results showed that there were information exchange deficits in the right prefrontal cortex (PFC) of children with ASD, with markedly higher interregion SCFCs between the right PFC and other brain regions than those of normal controls. Furthermore, the global SCFC was significantly higher in young patients with ASD, along with considerably higher intraregion SCFCs in the prefrontal and temporal lobes which represents more diverse information exchange in these areas. The study suggests a novel method to analyze the fNIRS required dynamic hemoglobin concentrations by using concepts of SCFC. Moreover, the clinical results extend our understanding of ASD pathology, suggesting the crucial role of the right PFC during the information exchange process.

Keywords: analysis; hemoglobin concentrations; novel analysis; dynamic hemoglobin; autism spectrum

Journal Title: Biomedical optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.