LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Feasibility of co-registered ultrasound and acoustic-resolution photoacoustic imaging of human colorectal cancer.

Photo from wikipedia

Colorectal cancer is the second leading cause of cancer death in the United States. Significant limitations in screening and surveillance modalities continue to hamper early detection of primary cancers or… Click to show full abstract

Colorectal cancer is the second leading cause of cancer death in the United States. Significant limitations in screening and surveillance modalities continue to hamper early detection of primary cancers or recurrences after therapy. In this study, we describe a new registered ultrasound (US) and acoustic-resolution photoacoustic microscopy (AR-PAM) system and report its initial testing in ex vivo human colorectal tissue. A total of 8 colorectal specimens were imaged, which included 2 polyps, 4 malignant colon cancers, and 2 treated colorectal cancers. In each specimen, normal tissue was also imaged for internal control. Initial data have demonstrated the feasibility of identifying colorectal cancer imaging features and the invasion depth using co-registered US and an AR-PAM system. In normal tissue, we found that our system consistently demonstrates the multi-layer structure of normal colonic tissue while differentiating layers with elevated vascularity; these findings highly correlated with histologic findings of each specimen. For malignant colorectal samples, the tissue structure is highly disorganized as seen in US, and photoacoustic imaging revealed distorted vascular distribution inside the tumor. Notably, AR-PAM of tumor beds after complete tumor destruction by radiation and chemotherapy yielded a pattern identical to benign tissue. Quantitative analysis of photoacoustic spectral slope has demonstrated more high-frequency components in malignant tissue as compared to the normal colon tissue, which may be caused by significantly increased microvessel networks. In summary, we demonstrate the successful differentiation of benign and malignant colorectal tissue with our co-registered ultrasound and photoacoustic system.

Keywords: colorectal cancer; tissue; ultrasound acoustic; registered ultrasound; cancer; acoustic resolution

Journal Title: Biomedical optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.