LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Buffer-averaging super-continuum source based spectral domain optical coherence tomography for high speed imaging.

Photo from wikipedia

In super-continuum (SC) source based spectral domain optical coherence tomography (SC-SDOCT), the stability of the power spectral density (PSD) has a significant impact on OCT system sensitivity and image signal… Click to show full abstract

In super-continuum (SC) source based spectral domain optical coherence tomography (SC-SDOCT), the stability of the power spectral density (PSD) has a significant impact on OCT system sensitivity and image signal to noise ratio (SNR). High speed imaging decreases the camera's exposure time, thus each A-scan contained fewer laser pulse excited SC wideband emissions, resulting in a decrease of SNR. In this manuscript, we present a buffer-averaging SC-SDOCT (BASC-SDOCT) to improve the system's performance without losing imaging speed, taking advantage of the excess output power from typical SC sources. In our proposed technique, the output light from SC was passed through a fiber based light buffering and averaging system to improve the PSD stability by averaging 8 SC emissions. The results showed that 6.96 µs of SC emission after buffering and averaging can achieve the same PSD stability equivalent to a longer exposure time of 55.68 µs, despite increasing the imaging speed from 16.8 kHz to 91.9 kHz. The system sensitivity was improved by 8.6 dB, reaching 100.6 dB, which in turn improved SNR of structural imaging, Doppler OCT velocity measurement, and speckle variance OCT (SVOCT) angiographic imaging as demonstrated by phantom and in vivo experiments.

Keywords: based spectral; super continuum; spectral domain; source based; speed; continuum source

Journal Title: Biomedical optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.