We investigate the optical exceptional points (EPs) in the graphene incorporated multilayer metamaterial manifesting Fano resonance. The system is non-Hermitian and possesses EPs where both the eigenvalues and eigenvectors of… Click to show full abstract
We investigate the optical exceptional points (EPs) in the graphene incorporated multilayer metamaterial manifesting Fano resonance. The system is non-Hermitian and possesses EPs where both the eigenvalues and eigenvectors of the Hamiltonian coalesce. In the aid of Fano resonance, the reflection may reach minimum approaching to zero, resulting in the degeneration of both eigenvalues and eigenvectors and thus the emergence of EPs. The transmission and reflection of light through the metamaterial change sharply by varying slightly the incident wavelength and chemical potential of graphene in the parameter space when encircling the EPs. In addition, the unidirectional invisibility can be achieved at EPs. The study paves a way to precisely controlling the transmission and reflection through metamaterials and may find applications in optoelectronic switches, modulators, absorbers, and optical sensors.
               
Click one of the above tabs to view related content.